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respy is an open-source Python package for the simulation and estimation of a prototypical finite-horizon discrete
choice dynamic programming model. We build on the baseline model presented in:

Keane, M. P. and Wolpin, K. I. (1994). The Solution and Estimation of Discrete Choice Dynamic Pro-
gramming Models by Simulation and Interpolation: Monte Carlo Evidence. The Review of Economics
and Statistics, 76(4): 648-672.
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CHAPTER 1

Background

respy is a research tool. It provides the computational support for several research projects that analyze the eco-
nomics driving agents’ educational and occupational choices over their life cycle within the framework of a finite-
horizon discrete choice dynamic programming model.

Here is some of the recent work:

 Eisenhauer, P. (2016). The Approximate Solution of Finite-Horizon Discrete Choice Dynamic Programming
Models: Revisiting Keane & Wolpin (1994). Unpublished Manuscript.

The estimation of finite-horizon discrete choice dynamic programming models is computationally
expensive. This limits their realism and impedes verification and validation efforts. Keane & Wolpin
(1994) propose an interpolation method that ameliorates the computational burden but introduces
approximation error. I describe their approach in detail, successfully recompute their original quality
diagnostics, and provide some additional insights that underscore the trade-off between computation
time and the accuracy of estimation results.

* Eisenhauer, P. (2016). Risk and Ambiguity in Dynamic Models of Educational Choice. Unpublished
Manuscript.

I instill a fear of model misspecification into the agents of a finite-horizon discrete choice dynamic
programming model. Agents are ambiguity averse and seek robust decisions for a variety of alterna-
tive models. I study the implications for agents’ decisions and the design and impact of alternative
policies.

We provide the package and its documentation to ensure the recomputability, transparency, and extensibility of this
research. We also hope to showcase how software engineering practices can help in achieving these goals.

The rest of this documentation is structured as follows. First, we provide the installation instructions. Then we present
the underlying economic model and discuss its solution and estimation. Next, we illustrate the basic capabilities of
the package in a tutorial. We continue by providing more details regarding the numerical components of the package
and showcase the package’s reliability and scalability. Finally, we outline the software engineering practices adopted
for the ongoing development of the package.



https://github.com/structRecomputation/manuscript/blob/master/eisenhauer.2016.pdf
https://github.com/structRecomputation/manuscript/blob/master/eisenhauer.2016.pdf
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CHAPTER 2

Installation

The respy package can be conveniently installed from the Python Package Index (PyPI) or directly from its source
files. We currently support Python 2.7 and Python 3.3+. We develop the package on Linux systems, but it can also be
installed on MacOS and Windows.

2.1 Python Package Index

You can install the stable version of the package the usual way.

’$ pip install respy

We provide a pure Python implementation as our baseline. However, to address performance constraints, we also
maintain scalar and parallel Fortran implementations. If additional requirements are met, both are installed automati-
cally.

2.1.1 ... adding Fortran

Please make sure that the gf ort ran compiler is available on your path and it knows where to find the Linear Algebra
PACKage (LAPACK) library.

On Ubuntu systems, both can be achieved by the following commands:

$ sudo apt-get install gfortran
$ sudo apt-get install libblas-dev liblapack-dev

If so, just call a slightly modified version of the installation command.

$ pip install --no-binary respy respy

The —no-binary flag is required for now to avoid the use of Python Wheels and ensure a compilation of the Fortran
source code during the build.



https://pypi.python.org/pypi
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
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2.1.2 ... adding Parallelism

We use the Message Passing Interface (MPI) library. This requires a recent version of its MPICH implementation
available on your compiler’s search path which was build with shared/dynamic libraries.

2.2 Source Files

You can download the sources directly from our GitHub repository.

’$ git clone https://github.com/restudToolbox/package.git

Once you obtained a copy of the source files, installing the package in editable model is straightforward.

’$ pip install -e .

2.3 Test Suite

Please make sure that the package is working properly by running our test suite using pytest.

’$ python -c "import respy; respy.test ()"

6 Chapter 2. Installation
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CHAPTER 3

Setup

We now start with the economics motivating the model and then turn to the solution and estimation approach. We
conclude with a discussion of a simulated example.

3.1 Economics

Keane and Wolpin (1994) develop a model in which an agent decides among K possible alternatives in each of
T (finite) discrete periods of time. Alternatives are defined to be mutually exclusive and di(t) = 1 indicates that
alternative k is chosen at time ¢ and dj(t) = 0 indicates otherwise. Associated with each choice is an immediate
reward Ry (S(t)) that is known to the agent at time ¢ but partly unknown from the perspective of periods prior to ¢t. All
the information known to the agent at time ¢ that affects immediate and future rewards is contained in the state space
S(t).

We depict the timing of events below. At the beginning of period ¢ the agent fully learns about all immediate rewards,
chooses one of the alternatives and receives the corresponding benefits. The state space is then updated according to
the agent’s state experience and the process is repeated in ¢ + 1.

Learn Choose Receive Learn Choose Receive
R(S(1)) di(t) R(S(1)) Ri(S(t+ 1)) dp(t + 1) Ri(S(t+1))
t t+1

Agents are forward looking. Thus, they do not simply choose the alternative with the highest immediate rewards each
period. Instead, their objective at any time 7 is to maximize the expected rewards over the remaining time horizon:

T
max B |Y 67" Ry(r)di(r)

{dr(t)}rex hek

S (t)l
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The discount factor 0 > § > 1 captures the agent’s preference for immediate over future rewards. Agents maximize
the equation above by choosing the optimal sequence of alternatives {dj (¢) }rex fort = 7,..,T.

Within this more general framework, Keane and Wolpin (1994) consider the case where agents are risk neutral and
each period choose to work in either of two occupations (k = 1,2), to attend school (k = 3), or to remain at home
(k = 4). The immediate reward functions are given by:

Ri(t) = wyy = exp{aio + a118¢ + Q1201 — Q1327 + Q142 — Q15T5, + €14}
Ry (t) = way = exp{aao + 215 + Qo221 — 0423961t + Q4o — 0425$2t + €2t}
R3(t) = Bo — Bul (st > 12) — a1 —d3(t — 1)) + €3
Ry(t) = v0 + €as,

where s; is the number of periods of schooling obtained by the beginning of period ¢, x1; is the number of periods that
the agent worked in occupation one by the beginning of period ¢, x5, is the analogously defined level of experience
in occupation two, o1 and ap are parameter vectors associated with the wage functions, Sy is the consumption value
of schooling, /3; is the post-secondary tuition cost of schooling, with I an indicator function equal to one if the agent
has completed high school and zero otherwise, (3 is an adjustment cost associated with returning to school, g is the
(mean) value of the non-market alternative. The €, ‘s are alternative-specific shocks to occupational productivity, to
the consumption value of schooling, and to the value of non-market time. The productivity and taste shocks follow a
four-dimensional multivariate normal distribution with mean zero and covariance matrix ¥ = [o;;]. The realizations
are independent across time. We collect the parametrization of the reward functions in = {a, as, 8,7, X}.

Given the structure of the reward functions and the agents objective, the state space at time ¢ is:
S(t) = {st, 211, v2r, d3(t — 1), €11, €21, €31, €4t}
It is convenient to denote its observable elements as S(t). The elements of S(t) evolve according to:
1441 = 12 + di (1)
T2 41 = T2r + da(t)
St+1 = St + dg(t)
Fleern | S(t),di(t)) = flees1 | S(2), di(t),

where the last equation reflects the fact that the ¢, ‘s are serially independent. We set x1; = xo; = 0 as the initial
conditions.

3.2 Solution

From a mathematical perspective, this type of model boils down to a finite-horizon DP problem under uncertainty
that can be solved by backward induction. For the discussion, it is useful to define the value function V' (S(t),t) as
a shorthand for the agents objective function. V(S(t),t) depends on the state space at ¢ and on ¢ itself due to the
finiteness of the time horizon and can be written as:

V(5(),1) = max{Vi(5(t),1)}, G.D

with V3,(S(t),t) as the alternative-specific value function. Vj(S(t),t) obeys the Bellman equation (Bellman, 1957)
and is thus amenable to a backward recursion.

Ri(S(t) + 6E[V(S(t+ 1)t +1) | S(¢), d(t) = 1] ift <T

Ri(S(t)) ift ="T. 2

Vie(S(t),t) = {

Assuming continued optimal behavior, the expected future value of state S(¢ + 1) for all K alternatives given today’s
state S(t) and choice di(t) = 1, Emax(S(t + 1)) for short, can be calculated:

Emax(S(t+1)) = E[V(St+1),t+1) | S(t),dy(t) = 1].

8 Chapter 3. Setup
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This requires the evaluation of a K - dimensional integral as future rewards are partly uncertain due to the unknown
realization of the shocks:

Emax(S(t)) =

/ / masc{ Ry (£), o, Ric ()} (e1(£), oo €5 (£))der (£)...dexc (£),
e1(t) ex (t)

where f. is the joint density of the uncertain component of the rewards in ¢ not known at ¢ — 1. With all ingredients at
hand, the solution of the model by backward induction is straightforward.

3.3 Estimation

We estimate the parameters of the reward functions 8 based on a sample of agents whose behavior and state experiences
are described by the model. Although all shocks to the rewards are eventually known to the agent, they remain
unobserved by the econometrician. So each parameterization induces a different probability distribution over the
sequence of observed agent choices and their state experience. We implement maximum likelihood estimation and
appraise each candidate parameterization of the model using the likelihood function of the observed sample (Fisher,
1922). Given the serial independence of the shocks, We can compute the likelihood contribution by agent and period.
The sample likelihood is then just the product of the likelihood contributions over all agents and time periods. As we
need to simulate the agent’s choice probabilities, we end up with a simulated maximum likelihood estimator (Manski
and Lerman, 1977) and minimize the simulated negative log-likelihood of the observed sample.

3.4 Simulated Example

Keane and Wolpin (1994) generate three different Monte Carlo samples. We study their first parameterization in
more detail now. We label the two occupations as Occupation A and Occupation B. We first plot the returns to
experience. Occupation B is more skill intensive in the sense that own experience has higher return than is the case for
Occupation A. There is some general skill learned in Occupation A which is transferable to Occupation B. However,
work experience in is occupation-specific in Occupation B.

-

Wages (in $1,000)
Wages (in $1,000)

3.3. Estimation 9
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The next figure shows that the returns to schooling are larger in Occupation B. While its initial wage is lower, it does
decrease faster with schooling compared to Occupation A.

30

28

26

24 |

22

Wages (in $1,000)

18

16

10 12 14 16 18 20
Years of Schooling

== (Qccupation A Occupation B

Simulating a sample of 1,000 agents from the model allows us to study how these features interact in determining agent
decisions over their life cycle. Note that all agents start out identically, different choices are simply the cumulative
effects of different shocks. Initially, 50% of agents increase their level of schooling but the share of agents enrolled in
school declines sharply over time. The share working in Occupation A hovers around 40% at first, but then declines to
21%. Occupation B continuously gains in popularity, initially only 11% work in Occupation B but its share increases
to about 77%. Around 1.5% stay at home each period. We visualize this choice pattern in detail below.

10 Chapter 3. Setup
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Jli.ipi..-’---l--; :;_ - !l!!!! !!!l!!!!
25 30 35 40

0 5 10 15 20
Period
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B Home [ School [ OccupationA [ Occupation B

We start out with the large majority of agents working in Occupation A. Eventually, however, most agents ends up
working in Occupation B. As the returns to education are higher for Occupation B and previous work experience is
transferable, Occupation B gets more and more attractive as agents increase their level of schooling and gain experience
in the labor market.

3.4. Simulated Example 11
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CHAPTER 4

Tutorial

We now illustrate the basic capabilities of the respy package. We start with the model specification and then turn to

some example use cases.

4.1 Model Specification

The model is specified in an initialization file. For an example, check out the first parameterization analyzed in Keane
and Wolpin (1994) here. Let us discuss each of its elements in more detail.

BASICS

Key Value | Interpretation
periods | int number of periods
delta float discount factor

other experience.

Warning: There are two small differences compared to Keane and Wolpin (1994). First, all coefficients enter the
return function with a positive sign, while the squared terms enter with a minus in the original paper. Second, the
order of covariates is fixed across the two occupations. In the original paper, own experience always comes before

OCCUPATION A
Key | Value | Interpretation
coeff | float intercept
coeff | float return to schooling
coeff | float experience Occupation A, linear
coeff | float experience Occupation A, squared
coeff | float experience Occupation B, linear
coeff | float experience Occupation B, squared

13
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OCCUPATION B
Key | Value | Interpretation
coeff | float intercept
coeff | float return to schooling
coeff | float experience Occupation A, linear
coeff | float experience Occupation A, squared
coeff | float experience Occupation B, linear
coeff | float experience Occupation B, squared
EDUCATION
Key | Value | Interpretation
coeff | float consumption value
coeff | float tuition cost
coeff | float adjustment cost
max | int maximum level of schooling
start | int initial level of schooling

Warning: Again, there is a small difference between this setup and Keane and Wolpin (1994). There is no
automatic change in sign for the tuition and adjustment costs. Thus, a $1,000 tuition cost must be specified as
-1000.

HOME
Key | Value | Interpretation
coeff | float mean value of non-market alternative
SHOCKS
Key | Value | Interpretation
coeff | float o1
coeff | float 012
coeff | float 013
coeff | float 014
coeff | float o9
coeff | float 0923
coeff | float 024
coeff | float o3
coeff | float 034
coeff | float o4
SOLUTION
Key Value | Interpretation
draws | int number of draws for £ max
store | bool persistent storage of results
seed int random seed for £ max

14 Chapter 4. Tutorial



respy Documentation, Release 1.0.0

SIMULATION
Key Value | Interpretation
file str file to print simulated sample
agents | int number of simulated agents
seed int random seed for agent experience
ESTIMATION
Key Value | Interpretation
file str file to read observed sample
tau float scale parameter for function smoothing
agents int number of agents to read from sample
draws int number of draws for choice probabilities
maxfun int maximum number of function evaluations
seed int random seed for choice probability
optimizer | str optimizer to use
PROGRAM
Key Value | Interpretation
debug | bool debug mode
version | str program version
PARALLELISM
Key | Value | Interpretation
flag bool parallel executable
procs | int number of processors
INTERPOLATION
Key Value | Interpretation
points | int number of interpolation points
flag bool flag to use interpolation
DERIVATIVES
Key Value | Interpretation
version | str approximation scheme
eps float step size
SCALING
Key Value | Interpretation
flag bool apply scaling to parameters
minimum | float minimum value for gradient approximation

The implemented optimization algorithms vary with the program’s version. If you request the Python version of the
program, you can choose from the scipy implementations of the BFGS (Norcedal and Wright, 2006) and POWELL

4.1. Model Specification

15
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(Powell, 1964) algorithm. Their implementation details are available here. For Fortran, we implemented the BFGS
and NEWUOA (Powell, 2004) algorithms.

SCIPY-BFGS
Key Value | Interpretation
gtol float gradient norm must be less than gtol before successful termination
maxiter | int maximum number of iterations
SCIPY-POWELL
Key Value | Interpretation
maxfun | int maximum number of function evaluations to make
ftol float relative error in func(xopt) acceptable for convergence
xtol float line-search error tolerance
SCIPY-LBFGSB
Key Value| Interpretation
eps float | Step size used when approx_grad is True, for numerically calculating the gradient

factr float

Multiple of the default machine precision used to determine the relative error in func(xopt) ac-
ceptable for convergence

m int Maximum number of variable metric corrections used to define the limited memory matrix.
max- | int maximum number of iterations
iter
maxls | int Maximum number of line search steps (per iteration). Default is 20.
pgtol | float | gradient norm must be less than gtol before successful termination
FORT-BFGS
Key Value | Interpretation
gtol float gradient norm must be less than gtol before successful termination
maxiter | int maximum number of iterations
FORT-NEWUOA
Key Value | Interpretation
maxfun | float maximum number of function evaluations
npt int number of points for approximation model
rhobeg | float starting value for size of trust region
rhoend | float minimum value of size for trust region
FORT-BOBYQA
Key Value | Interpretation
maxfun | float maximum number of function evaluations
npt int number of points for approximation model
rhobeg | float starting value for size of trust region
rhoend | float minimum value of size for trust region
16 Chapter 4. Tutorial
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4.2 Constraints for the Optimizer

If you want to keep any parameter fixed at the value you specified (i.e. not estimate this parameter) you can simply
add an exclamation mark after the value. If you want to provide bounds for a constrained optimizer you can specify a
lower and upper bound in round brackets. A section of such an .ini file would look as follows:

coeff -0.049538516229344

coeff 0.020000000000000 !

coeff -0.037283956168153 (-0.5807488086366478, None)
coeff 0.036340835226155 ! (None, 0.661243603948984)

In this example, the first coefficient is free. The second one is fixed at 0.2. The third one will be estimated but has a
lower bound. In the fourth case, the parameter is fixed and the bounds will be ignored.

If you specify bounds for any free parameter, you have to choose a constraint optimizer such as SCIPY-LBFGSB or
FORT-BOBYQA.

4.3 Dataset

To use respy, you need a dataset with the following columns:
* Identifier: identifies the different individuals in the sample
* Period: identifies the different rounds of observation for each individual
* Choice: an integer variable that indicates the labor market choice

— 1 =Occupation A

2 = Occupation B

3 = Education

— 4 =Home

» Earnings: a float variable that indicates how much people are earning. This variable is missing (indicated by a
dot) if individuals don’t work.

» Experience_A: labor market experience in sector A

» Experience_B: labor market experience in sector B

* Years_Schooling: years of schooling

» Lagged_Choice: choice in the period before the model starts. Codes are the same as in Choice.

Datasets for respy are stored in simple text files, where columns are separated by spaces. The easiest way to write such
a text file in Python is to create a pandas DataFrame with all relevant columns and then storing it in the following way:

with open('my_data.respy.dat', 'w') as file:
df .to_string(file, index=False, header=True, na_rep='.")

4.4 Examples

Let us explore the basic capabilities of the respy package with a couple of examples. All the material is available
online.

Simulation and Estimation

4.2. Constraints for the Optimizer 17
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We always first initialize an instance of the RespyC1ls by passing in the path to the initialization file.

from respy import RespyCls

respy_obj = RespyCls ('example.ini'")

Now we can simulate a sample from the specified model.

respy_obj.simulate ()

During the simulation, several files will appear in the current working directory. sol . respy . log allows to monitor
the progress of the solution algorithm, while sim. respy . log records the progress of the simulation. The simulated
dataset with the agents’ choices and state experiences is stored in data.respy.dat, data.respy.info pro-
vides some basic descriptives about the simulated dataset. See our section on Additional Details for more information
regarding the output files.

Now that we simulated some data, we can start an estimation. Here we are using the simulated data for the estimation.
However, you can of course also use other data sources. Just make sure they follow the layout of the simulated sample.
The coefficient values in the initialization file serve as the starting values.

x, crit_val = respy_obj.fit ()

This directly returns the value of the coefficients at the final step of the optimizer as well as the value of the criterion
function. However, some additional files appear in the meantime. Monitoring the estimation is best done using est .
respy.info and more details about each evaluation of the criterion function are available in est . respy. log.

We can now simulate a sample using the estimated parameters by updating the instance of the RespyCls.

respy_obj.update_model_paras (x)

respy_obj.simulate ()

Recomputing Keane and Wolpin (1994)

Just using the capabilities outlined so far, it is straightforward to recompute some of the key results in the original
paper with a simple script.

#!/usr/bin/env python
""" This module recomputes some of the key results of Keane and Wolpin (1994).

mwn

from respy import RespyCls

# We can simply iterate over the different model specifications outlined in
# Table 1 of their paper.
for spec in ['kw_data_one.ini', 'kw_data_two.ini', 'kw_data_three.ini']:

# Process relevant model initialization file
respy_obj = RespyCls (spec)

# Let us simulate the datasets discussed on the page 658.
respy_obj.simulate ()

# To start estimations for the Monte Carlo exercises. For now, we just
# evaluate the model at the starting values, i.e. maxfun set to zero in
# the initialization file.

respy_obj.unlock ()

respy_obj.set_attr ('maxfun', 0)

(continues on next page)

18 Chapter 4. Tutorial
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(continued from previous page)

respy_obj.lock ()

respy_obj.fit ()

In an earlier working paper, Keane and Wolpin (1994b) provide a full account of the choice distributions for all three
specifications. The results from the recomputation line up well with their reports.

4.4. Examples 19
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CHAPTER B

Numerical Methods

The respy package contains several numerical components. We discuss each in turn.

5.1 Differentiation

Derivatives are approximated by forward finite differences and used by derivative-based optimization algorithms and
the scaling procedure. The step-size can be controlled in the DERIVATIVES section of the initialization file.

5.2 Integration

Integrals are approximated by Monte Carlo integration and occur in two different places:

* The solution of the model requires the evaluation of £ max. This integral is approximated using the number of
random draws specified in the SOLUTION section of the initialization file. The same random draws are used for
all integrals within the same period.

* The estimation of the model requires the simulation of the choice probabilities to evaluate the sample likelihood.
This integral is approximated using the number of random draws specified in the ESTIMATION section of the
initialization file. The same random draws are used for all integrals within the same period.

5.3 Optimization

The estimation of the model involves the minimization of the simulated negative log-likelihood of the sample. The
available optimizers depend on the version of the program. If you use the Python implementation, then the Powell
(Powell, 1964) and BFGS (Norcedal and Wright, 2006) algorithms are available through their scipy implementa-
tions. For the Fortran implementation, we provide the BFGS and NEWUOA (Powell, 2004) algorithms. The algorithm
to be used is specified in the ESTIMATION section of the initialization file.

* Preconditioning

21
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We implemented a diagonal scale-based preconditioner based on the gradient. To stabilize the rou-
tine, the user needs to specify a minimum value for the derivative approximation. The details are
governed by the SCALING section of the initialization file.

5.4 Function Approximation

We follow Keane and Wolpin (1994) and allow to alleviate the computational burden by calculating the E max only
at a subset of states each period and interpolating its value for the rest. We implement their proposed interpolation
function:

4 4 1
EFmax—maxFE = m + ij(maxE -V + szj (maxE - VJ)E . 5.1
j=1 j=1

V; is shorthand for the expected value of the alternative-specific value function and max E = maxy{V;} is its max-
imum among the choices available to the agent. The 7‘s are time-varying as they are estimated by ordinary least
squares each period. The subset of interpolation points for the interpolating function is chosen at random for each
period. The number of interpolation points remains constant across all periods. The number of interpolation points is
selected in the INTERPOLATION section of the initialization file.

5.5 Function Smoothing

We simulate the agents’ choice probabilities to evaluate the negative log-likelihood of the sample. With only a finite
number of draws, there is always the risk of simulating a zero probability for an agent’s observed decision. So we
implement the logit-smoothed accept-reject simulator as suggested by McFadden (1989). The scale parameter A is set
in the ESTIMATION section of the initialization file.

5.6 Miscellaneous

We use the LAPACK library for all numerical algebra. The generation of pseudorandom numbers differs between the
Python and Fortran implementations. While they are generated by the Mersenne Twister (Matsumoto and Nishimura,
1998) in Python, we rely on the George Marsaglia’s KISS generator (Marsaglia, 1968) in Fortran.

22 Chapter 5. Numerical Methods
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CHAPTER O

Reliability

We document the results of two straightforward Monte Carlo exercises to illustrate the reliability of the respy pack-
age. We use the first parameterization from Keane and Wolpin (1994) and simulate a sample of 1,000 agents. Then
we run two estimations with alternative starting values. We use the root-mean squared error (RMSE) of the simulated
choice probabilities to assess the estimator’s overall reliability. We use the NEWUOA algorithm with its default tuning
parameters and allow for a maximum of 3,000 evaluations of the criterion function.

6.1 ... starting at true values

Initially we start at the true parameter values. While taking a total of 1,491 steps, the actual effect on the parameter
values and the criterion function is negligible. The RMSE remains literally unchanged at zero.

Start | Stop | Steps | Evaluations
0.00 | 0.00 | 1,491 | 3,000

6.2 ... starting with myopic agents

Again we start from the true parameters of the reward functions, but now estimate a static (6 = 0) model first. We
then use the estimation results as starting values for the subsequent estimation of a correctly specified dynamic model
(6 = 0.95). For the static estimation, we start with a RMSE of about 0.44 which, after 950 steps, is cut to 0.25. Most
of this discrepancy is driven by the relatively low school enrollments as there is no investment motive for the myopic
agents.

Start | Stop | Steps | Evaluations
0.44 | 0.25 | 950 3,000

We then set up the estimation of the dynamic model. Initially, the RMSE is about 0.23 but is quickly reduced to only
0.01 after 1,453 steps of the optimizer.

23
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Start

Stop

Steps

Evaluations

0.23

0.01

1,453

3,000

Overall the results are encouraging. However, doubts about the correctness of our implementation always remain. So,
if you are struggling with a particularly poor performance in your application, please do not hesitate to let us know so

we can help with the investigation.

For more details, see the script online. The results for all the parameterizations analyzed in Keane and Wolpin (1994)

are available here.

24
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CHAPTER /

Scalability

The solution and estimation of finite-horizon discrete choice dynamic programming model appears straightforward.
However, it entails a considerable computational burden due to the well known curse of dimensionality (Bellman and
Dreyfus, 1962). The figure below illustrates how the total number of states increases exponentially with each period.
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During an estimation, thousands of different candidate parameterizations of the model are appraised with respect to
the sample likelihood. Each time we need to evaluate the four-dimensional integral of I max at a total of 163,410
states. Thus, in addition to Python, we also maintain a scalar and parallel Fortran implementation. We parallelize
the workload using the master-slave paradigm. We assign each slave a subset of states to evaluate the F max and a
subset of agents to simulate their choice probabilities. Below, we show the total computation time required for 1,000
evaluations of the criterion function as we increase the number of slave processors to ten. Judging against the linear
benchmark, the code scales well over this range.
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1:23:20 |

1:06:40 |

Hours
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0 2 4 6 8 10
Number of Slaves

== respy  --- Linear Benchmark

Adding even more processors, however, does not lead to any further improvements, it even increases the computational
time. The main reason is the time spend on the synchronization of E max across all processes each period. Even
though each slave is only working on a subset of states each period, they need access all previous F max results
during the backward induction procedure.

For more details, see the script online and the logfile.
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CHAPTER 8

Software Engineering

We now briefly discuss our software engineering practices that help us to ensure the transparency, reliability, scalabil-
ity, and extensibility of the re spy package.

8.1 Development Infrastructure

We maintain a dedicated development and testing server on the Amazon Elastic Compute Cloud. We treat our infras-
tructure as code thus making it versionable, testable, and repeatable. We create our machine images using Packer and
Chef and manage our compute resources with Terraform. Our definition files are available here.

8.2 Program Design

We build on the design of the original authors (codes). We maintain a pure Python implementation with a focus on
readability and a scalar and parallel Fortran implementation to address any performance constraints. We keep the
structure of the Python and Fortran implementation aligned as much as possible. For example, we standardize the
naming and interface design of the routines across versions.

8.3 Test Battery

We use pytest as our test runner. We broadly group our tests in four categories:
¢ property-based testing

We create random model parameterizations and estimation requests and test for a valid return of
the program. For example, we estimate the same model specification using the parallel and scalar
implementations as both results need to be identical. Also, we maintain a an £2py interface to ensure
that core functions of our Python and Fortran implementation return the same results. Finally, we
also upgraded the codes by Keane and Wolpin (1994) and can compare the results of the respy
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package with their implementation for a restricted set of estimation requests that are valid for both
programs.

* regression testing

We retain a set of 10,000 fixed model parameterizations and store their estimation results. This
allows to ensure that a simple refactoring of the code or the addition of new features does not have
any unintended consequences on the existing capabilities of the package.

* scalability testing

We maintain a scalar and parallel Fortran implementation of the package, we regularly test the scal-
ability of our code against the linear benchmark.

* reliability testing

We conduct numerous Monte Carlo exercises to ensure that we can recover the true underlying pa-
rameterization with an estimation. Also by varying the tuning parameters of the estimation (e.g.
random draws for integration) and the optimizers, we learn about their effect on estimation perfor-
mance.

* release testing

We thoroughly test new release candidates against previous releases. For minor and micro releases,
user requests should yield identical results. For major releases, our goal is to ensure that the same is
true for at least a subset of requests. If required, we will build supporting code infrastructure.

* robustness testing

Numerical instabilities often only become apparent on real world data that is less well behaved than
simulated data. To test the stability of our package we start thousands of estimation tasks on the
NLSY dataset used by Keane and Wolpin. We use random start values for the parameter vector that
can be far from the true values and make sure that the code can handle those cases.

Our tests and the testing infrastructure are available online. As new features are added and the code matures, we
constantly expand our testing harness. We run a test battery nightly on our development server, see here for an
example output.

8.4 Documentation

The documentation is created using Sphinx and hosted on Read the Docs.

8.5 Code Review

We use several automatic code review tools to help us improve the readability and maintainability of our code base.
For example, we work with Codacy and Landscape

8.6 Continuous Integration Workflow

We set up a continuous integration workflow around our GitHub Organization. We use the continuous integration
services provided by Travis CI. tox helps us to ensure the proper workings of the package for alternative Python
implementations. Our build process is managed by Waf. We rely on Git as our version control system and follow the
Gitflow Workflow. We use GitLab for our issue tracking. The package is distributed through PyPI which automatically
updated from our development server.
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CHAPTER 9

Contributing

Great, you are interesting in contributing to the package. Please announce your interest on our mailing list so we can
find you something to work on.

To get acquainted with the code base, you can check out our issue tracker for some immediate and clearly defined tasks.
For more involved contributions, please see our roadmap below. Feel free to set up your development infrastructure
using our Amazon Machine Image or Chef cookbook.

9.1 Roadmap

We aim for improvements to respy in three domains: Economics, Software Engineering, and Numerical Methods.

9.1.1 Economics

* support the full model of Keane and Wolpin (1997)

9.1.2 Software Engineering

* explore Autotools as a new build system

« research the hypothesis package to replace the hand-crafted property-based testing routines
9.1.3 Numerical Methods

* link the package to optimization toolkits such as TAO or HOPSPACK

* implement additional integration strategies following Skrainka and Judd (2011)
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cHAaPTER 10

Additional Details

10.1 Output Files

Depending on the user’s request, the respy package creates several output files.

Warning: There is a slight difference between the estimation parameters in the files below and the model spec-
ification. The difference is in the parameters for the covariance matrix. During the estimation we iterate on a
flattened version of the upper-triangular Cholesky decomposition. This ensures that the requirements for a valid
covariance matrix, e.g. positive semidefiniteness and strictly positive variances, are always met as the optimizer
appraises alternative model parameterizations.

10.1.1 Simulation

¢ data.respy.dat

This file contains the agent choices and state experiences. The simulated dataset has the following structure.

Column | Information

agent identifier

time period

choice (1 = Occupation A, 2 = Occupation B, 3 = education, 4 = home)
wages (missing value if not working)

work experience in Occupation A

work experience in Occupation B

years of schooling

lagged schooling

0 I[N N K| WD —

* data.respy.info

This file provides descriptive statistics such as the choice probabilities and the wage distributions. It also prints out the
underlying parameterization of the model.
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¢ sim.respy.log

This file allows to monitor the progress of the simulation. It provides information about the seed used to sample the
random components of the agents’ state experience and the total number of simulated agents.

* sol.respy.log

This file records the progress of the backward induction procedure. If the interpolation method is used during the
backward induction procedure, the coefficient estimates and goodness of fit statistics are provided.

* solution.respy.pkl

This file is an instance of the RespyC1ls and contains detailed information about the solution of model such as the
E max of each state for example. For details, please consult the source code directly. It is created if persistent storage
of results is requested in the SOLUTION section of the initialization file.

10.1.2 Estimation

* est.respy.info

This file allows to monitor the estimation as it progresses. It provides information about starting values, step values,
and current values as well as the corresponding value of the criterion function.

* est.respy.log

This file documents details about each of the evaluations of the criterion function. Most importantly, once an estimation
is completed, it provides the return message from the optimizer.

10.2 API Reference

The API reference provides detailed descriptions of respy classes and functions. It should be helpful if you plan to
extend respy with custom components.

class respy.RespyCls (fname)
Class to process and manage the user’s initialization file.

Parameters fname (str) — Path to initialization file
Returns Instance of RespyCls

classmethod update_model_paras (x)
Function to update model parameterization.

Parameters x (numpy.ndarray)— Model parameterization
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cHAPTER 11

Developer Documentation

11.1 The pre_processing directory

This directory contains code to process the model specifications and estimation dataset. The code here is Python only.
Speed is irrelevant since most of the functions here are only called once (when a new model is defined) and not each

time the model is solved.

11.1.1 The model_processing module
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cHAPTER 12

Contact and Credits

If you have any questions or comments, please do not hesitate to contact us directly.

12.1 Development Lead

Philipp Eisenhauer

12.2 Contributors

Janos Gabler

12.3 Acknowledgments

We are grateful to the Social Science Computing Services at the University of Chicago who let us use the Acropolis
cluster for scalability and performance testing. We appreciate the financial support of the AXA Research Fund and the
University of Bonn. We are indebted to the open source community as we build on top of numerous open source tools
such as the SciPy Stack, statsmodels, and waf.

12.4 Suggested Citation

We appreciate citations for respy because it helps us to find out how people have been using the package and it
motivates further work. Please use our Digital Object Identifier (DOI) and see here for other citation styles.
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cHAPTER 13

Changes

This is arecord of all past respy releases and what went into them in reverse chronological order. We follow semantic
versioning and all releases are available on PyPI.

13.1 1.0.0 - 2016-09-01

This is the initial release of the re spy package.
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